Optimization of Probiotic Drinks Fermentation in Bidara (Ziziphus mauritiana) Fruit Juice with Lactobacillus plantarum InaCC B616 using Response Surface Methodology

Downloads
Bidara fruit (Ziziphus mauritiana) is known to contain various bioactive phytochemicals, including phenolic acid, ascorbic acid, saponins, terpenoids, flavonoids, and tannins, making it highly promising for development into functional beverage products. Several studies state that fermentation with probiotic bacteria can improve the functional properties of products. This research aims to optimize the fermentation process of bidara fruit juice with Lactobacillus plantarum InaCC B616 using Response Surface Methodology and determine the effect of fermentation time on the content of bioactive compounds such as total phenols, total flavonoids, antioxidant capacity, and inhibition of the α-glucosidase enzyme. Optimization of fermentation was carried out using a Central composite design with 13 experimental samples and test data using Design Expert® 13 software, the optimization of fermentation time was conducted using a Completely Randomized Design (CRD) with four treatment groups and three replications per group, including a negative control treatment: no fermentation (F0), fermentation for 12 hours (F1), fermentation for 24 hours (F2), and fermentation for 48 hours (F3). The research results showed that 18.61% bidara fruit juice and 0.34% skim milk was the optimum formula for fermenting bidara fruit juice. The best fermentation duration was in the F3 group (fermentation for 48 hours), in this group the bacterial growth reached 3.1x109 cfu/mL with a total phenolic compound content of 81.80 mg GAE/mL, total flavonoids 2.81 mg QE/g, capacity antioxidant 99.28 µg AAE/mL, and inhibition of the α-glucosidase enzyme 87.42%. The fermentation of bidara fruit juice with Lactobacillus plantarum InaCC B616 has the potential to enhance total phenol content, total flavonoids, antioxidant capacity, and α-glucosidase enzyme inhibition, making it a promising candidate for probiotic beverages. This drink could be developed as an alternative treatment for type 2 diabetes mellitus due to its inhibitory activity against the α-glucosidase enzyme.
Downloads
Adilah HN, Saleh MI, Deliasari N, Az-Zahra A, Cho E, & Sinaga E. Physical and Chemical Studies Total Phenolic and Total Flavonoid Content, Antioxidant Activity, and Nutritional Profile of Ziziphus mauritiana Fruit Juice. International Journal of Biological, Physical and Chemical Studies. 2022;5(1):1–8. doi: https://doi.org/10.32996/ijbpcs
Butt SZ, Hussain S, Munawar KS. Phytochemistry of Ziziphus mauritiana: An Overview of its Nutritional and Pharmaceutical Potential. Scientific Inquiry and Review. 2021;5(2):1–15. doi: https://doi.org/10.32350/sir
El Maaiden E, El Kharrassi Y, Qarah NAS, Essamadi AK, Moustaid K, Nasser B. Genus Ziziphus: A comprehensive review on ethnopharmacological, phytochemical and pharmacological properties. Journal of Ethnopharmacology. 2020;259:1–22. doi: https://doi.org/10.1016/j.jep.2020.112950
Farida E, Lestari YNA, Susilo MT, Rachmawati L. Potensi Eksopolisakarida Bakteri Asam Laktat Untuk Mencegah Dan Mengendalikan Diabetes Mellitus Tipe 2. Book Chapter Kesehatan Masyarakat Jilid 2 Universitas Negeri Semarang. 2022:70–100. doi: https://doi.org/10.15294/km.v1i2.75
Farida E. Aktivitas Antioksidan Dan Penghambatan α-Glukosidase Oleh Ekstrak Etanol Bakteri Asam Laktat Indigenus. Jurnal Teknologi Dan Industri Pangan. 2019;30(1):56–63. doi: https://doi.org/10.6066/jtip.2019.30.1.56
Ferrando BO, Baenas N, Rincón F, Periago MJ. Green Extraction of Carotenoids from Tomato By-products Using Sodium Dodecyl Sulphate. Food and Bioprocess Technology. 2023:1–14. doi: https://doi.org/10.1007/s11947-023-03292-x
Filannino P, Di Cagno R, Gobbetti M. Metabolic and functional paths of lactic acid bacteria in plant foods: get out of the labyrinth. Current Opinion in Biotechnology. 2018;49:64–72. doi: https://doi.org/10.1016/j.copbio.2017.07.016
Frediansyah A, Romadhoni F, Suryani, Nurhayati R, Wibowo AT. Fermentation of Jamaican cherries juice using Lactobacillus plantarum elevates antioxidant potential and inhibitory activity against type II diabetes-related enzymes. Molecules. 2021;26(10):1–14. doi: https://doi.org/10.3390/molecules26102868
Guerin M, Robert-Da Silva C, Garcia C, Remize F. Lactic Acid Bacterial Production of Exopolysaccharides from Fruit and Vegetables and Associated Benefits. Fermentation. 2020;6(115):1–21. doi: https://doi.org/10.3390/fermentation6040115
Hidayat IR, Zuhrotun A, Sopyan I. Design-Expert Software sebagai Alat Optimasi Formulasi Sediaan Farmasi. Majalah Farmasetika. 2020;6(1):99–120. doi: https://doi.org/10.24198/mfarmasetika.v6i1.27842
Intan AEK, Zuhro F, Ramadhani RL. Pharmacological Activities of Ziziphus Maritiana. Jurnal Info Kesehatan. 2021;11(2):456–462. doi: https://jurnal.ikbis.ac.id/infokes/article/view/398
Khangarot K, Mishra A, Bhardwaj R, Sharma R. Phytochemical and in vitro antioxidant potential screening of Grewia asiatica L. Journal of Pharmacognosy and Phytochemistry.2024;13(1):230–232. doi: https://doi.org/10.22271/phyto.2024.v13.i1c.14831
Koh WY, Uthumporn U, Rosma A, Irfan R, Park YH. Optimization of a fermented pumpkin-based beverage to improve Lactobacillus mali survival and α-glucosidase inhibitory activity: A response surface methodology approach. Food Science and Human Wellness. 2018;7:57-70. doi: https://doi.org/10.1016/j.fshw.2017.11.001
Kusumawati N, Indrayudha P. Inhibition of alpha-glucosidase enzyme by neem leaf (Azadirachta indica) and mango ginger (Curcuma mangga). Jurnal Kefarmasian Indonesia. 2021;11(1):56-64. doi: 10.22435/jki.v11i1.3950.
Kwaw E, Ma Y, Tchabo W, Apaliya MT, Wu M, Sackey AS, Xiao L, Tahir HE. Effect of Lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chemistry. 2018;250:148–154. doi: https://doi.org/10.1016/j.foodchem.2018.01.009
Mahnashi MH, Alqahtani YS, Alyami BA, Alqarni AO, Ayaz M, Ghufran M, Ullah F, Sadiq A, Ullah I, Haq IU, Khalid M, Murthy HCA. Phytochemical Analysis, α -Glucosidase and Amylase Inhibitory, and Molecular Docking Studies on Persicaria hydropiper L. Leaves Essential Oils. Evidence-Based Complementary and Alternative Medicine. 2022;2022:1–11. doi: https://doi.org/10.1155/2022/7924171
Maryati Y, Susilowati A, Artanti N, Lotulung PD, Aspiyanto. Pengaruh fermentasi terhadap aktivitas antioksidan dan kadar betasianin minuman fungsional buah naga dan umbi bit. Jurnal Bioteknologi Dan Biosains Indonesia. 2020;7(1):48–58. doi: http://ejurnal.bppt.go.id/index.php/JBBI/article/view/3732
Masengi KIEG, Siampa JP, Tallei TE. Penyalutan Bakteri Asam Laktat Hasil dari Fermentasi Kulit Buah Nanas (Ananas comosus) dengan Pewarna Bunga Telang (Clitoria ternatea). Jurnal Bios Logos. 2020;10(2):86. doi: https://doi.org/10.35799/jbl.10.2.2020.29047
Megawati S, Fajriah S, Meilawati L, Supriadi E. Phenolic content and total flavonoid of Macaranga hispida (Blume) Mull. Arg as antidiabetic medicine candidates. Jurnal Kefarmasian Indonesia. 2021;11(1):1-7. doi: 10.22435/jki.v11i1.2846.
Mouhoubi K, Boulekbache-Makhlouf L, Mehaba W, Himed-Idir H, Madani K. Convective and microwave drying of coriander leaves: Kinetics characteristics and modeling, phenolic contents, antioxidant activity, and principal component analysis. Journal of Food Process Engineering. 2022;45(1). doi: https://doi.org/10.1111/jfpe.13932
Nurcholis W, Sya’bani Putri DN, Husnawati H, Aisyah SI, Priosoeryanto BP. Total flavonoid content and antioxidant activity of ethanol and ethyl acetate extracts from accessions of Amomum compactum fruits. Annals of Agricultural Sciences. 2021;66(2021):58–62. doi: https://doi.org/10.1016/j.aoas.2021.04.001
Prakash O, Usmani S, Singh R, Singh N, Gupta A, Ved A. A Panoramic View on Phytochemical, Nutritional, and Therapeutic Attributes of Ziziphus mauritiana Lam.: A Comprehensive Review. Phytotherapy Research. 2021;35(1):63–77. doi: https://doi.org/10.1002/ptr.6769
Rahmi N, Khairiah N, Rufida R, Hidayati S, Muis A. Effect of Fermentation on Total Phenolic, Radical Scavenging and Antibacterial Activity of Waterlily (Nymphaea pubescens Willd). Biopropal Industri. 2020;11(1):9. doi: https://doi.org/10.36974/jbi.v11i1.5553
Riaz MU, Hussain T, Raza MA, Saeed A, Ahmed M. Variations in Morphological Characters and Antioxidant Potential of Different Plant Parts of Four Ziziphus Mill. Species from the Cholistan. Plants. 2021;10:1–14. doi: https://doi.org/10.3390/plants10122734
Sareen A, Gupta RC, Bansal G, Singh V. Comparison of Key Mineral Elements in Wild Edible Fruits of Ziziphus Mauritiana and Z. Nummularia Using Atomic Absorption Spectrophotometer (AAS) and Flame Photometer. International Journal of Fruit Science. 2020;20(S2):S987–S994. doi: https://doi.org/10.1080/15538362.2020.1774468
Soraya S, Sukara E, Sinaga E. Identification of Chemical Compounds in Ziziphus mauritiana Fruit Juice by GC-MS and LC-MS/MS Analysis. International Journal of Biological, Physical and Chemical Studies. 2022;4(2):11–19. doi: https://doi.org/10.32996/ijbpcs.2022.4.2.2
Widyastuti Y, Febrisiantosa A, Tidona F. Health-Promoting Properties of Lactobacilli in Fermented Dairy Products. Frontiers in Microbiology. 2021;12(May):1–8. doi: https://doi.org/10.3389/fmicb.2021.673890
Wulandari L, Nugraha AS, UAH. In vitro determination of antioxidant and antidiabetic activity of matoa leaf extract (Pometia pinnata J. R. Forst. & G. Forst.). Jurnal Kefarmasian Indonesia. 2021;11(2):132-141. doi: 10.22435/jki.v11i2.3196.
Yaa R, Schneiderman E, Ben Aharon V. Stanevsky M, Drori E. Development of a Novel Approach for Controlling and Predicting Residual Sugars in Wines. Fermentation. 2024;10(125):1–11. doi: https://doi.org/10.3390/fermentation10030125.
Copyright (c) 2025 Jurnal Kefarmasian Indonesia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.